Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\mathrm{Nd}\left[\mathrm{Al}\left({ }^{i} \mathrm{PrO}\right)_{4}\right]_{3}$, a novel tetranuclear alkoxide forming merohedrally twinned crystals

Marat Moustiakimov, ${ }^{\text {a* }}$ Mikael Kritikos ${ }^{\text {a }}$ and Gunnar Westin ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden, and ${ }^{\text {b/Ingorganic Chemistry, Ångström Laboratory, }}$ Uppsala University, S-751 21 Uppsala, Sweden
Correspondence e-mail: marat@struc.su.se

Received 13 September 2000
Accepted 8 January 2001
The new tetranuclear alkoxide hexa- μ_{2}-isopropoxy-1:2 $\kappa^{4} O$;$1: 3 \kappa^{4} O ; 1: 4 \kappa^{4} O$-hexaisopropoxy- $2 \kappa^{2} O, 3 \kappa^{2} O, 4 \kappa^{2} O$-trialuminium(III)neodymium(III), $\left[\mathrm{Nd}\left\{\mathrm{Al}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right)_{4}\right\}_{3}\right]$, has a metaloxygen $\mathrm{NdAl}_{3} \mathrm{O}_{12}$ core which consists of four metal atoms arranged in an approximately planar triangular geometry. The central Nd atom is six-coordinated by O atoms and the Al atoms are four-coordinated by O atoms.

Comment

Lanthanide-aluminium-based alkoxides have recently received much interest because of their structures in the solid state (Kritikos et al., 2001). Another appealing feature of these compounds is that they can be used as precursors in oxidebased materials. Of particular interest is the potential use of $\left[M\left\{\mathrm{Al}\left({ }^{i} \mathrm{PrO}\right)_{4}\right\}_{3}\right]$ (M is Er, Eu or Nd) in high-purity optical materials (Westin et al., 1998, 2000). We present here the structure of the title compound, (I), a new member of this series of materials.

As expected from its composition, compound (I) is almost isostructural with the orthorhombic $\left[\mathrm{Er}\left\{\mathrm{Al}\left({ }^{i} \mathrm{PrO}\right)_{4}\right\}_{3}\right]$ (space group $P 2_{1} 2_{1} 2_{1}$; Wijk et al., 1996) and can be considered as a monoclinic deviation from the latter. There is no significant
difference in the molecular geometry of the two. The Er-phase, in contrast with the Nd-phase, was studied at room temperature, which might explain the difference in their space groups. It was found by means of PLATON (Spek, 1990) that (I) also possesses, though rather approximately, $P 2_{1} 2_{1} 2_{1}$ symmetry with a maximum deviation of $0.9 \AA$. An additional pseudo- 2_{1} axis relates two independent molecules of (I) present in the asymmetric unit, which thus have nearly identical geometry.

The point-group symmetry of the metal-oxygen core of (I) is close to C_{3}, as determined by $S Y M M O L$ (Pilati \& Forni, 2000); the r.m.s. deviation is estimated at $0.12 \AA$. The three Al atoms form a triangle, with the Nd atom in the centre. Nd and Al are interconnected by two bridging $\mu_{2}-\mathrm{O}$ atoms, with $\mu_{2^{-}}$ $\mathrm{O}-\mathrm{Nd}-\mu_{2}-\mathrm{O}$ angles close to $64.2(2)^{\circ}$. Each Al has two additional isopropoxy O atoms completing the distorted tetrahedral coordination sphere. $\mathrm{Al}-\mu_{2}-\mathrm{O}$ distances are close to the average value of 1.79 (1) \AA, while terminal O atoms are located approximately 1.70 (1) \AA from Al . The $\mu_{2}-\mathrm{O}-\mathrm{Al}-$ $\mu_{2}-\mathrm{O}$ and $\mathrm{O}-\mathrm{Al}-\mathrm{O}$ valence angles are close to 89 and 118°, respectively. In addition, all six $\mathrm{Nd}-\mathrm{O}$ bonds are close to the average value of 2.352 (11) A. The coordination polyhedron of the Nd atom can be described as halfway between octahedral and trigonal prismatic, i.e. the triangular face of the octahedron is rotated around the threefold axis by 28°.

Interestingly, a solvated analogue, $\left[\mathrm{Nd}\left\{\mathrm{Al}\left({ }^{i} \mathrm{PrO}\right)_{4}\right\}_{3}\right] \cdot{ }^{i} \mathrm{PrOH}$, of (I) has recently been reported by Veith et al. (2000). In this molecule, the central Nd atom is bonded to an additional protonated isopropoxy group and is thus seven-coordinated by O atoms. Accordingly, this leads to distortion of the molecule from C_{3} symmetry to C_{1} and an increase of the average $\mathrm{Nd}-\mathrm{O}$ distance to 2.44 (6) \AA. However, the NdAl_{3} metal core still has planar geometry (point group C_{s}, r.m.s. deviation $0.15 \AA$). The AlO_{4} tetrahedra are similar to those in (I): the $\mathrm{Al}-\mu_{2}-\mathrm{O}$ and $\mathrm{Al}-\mathrm{O}$ bond distances are close to 1.8 and

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity. Only the higher occupancy part of each disordered $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ group and only one molecule from the asymmetric unit are shown.
$1.7 \AA$, respectively, and the $\mu_{2}-\mathrm{O}-\mathrm{Al}-\mu_{2}-\mathrm{O}$ and $\mathrm{O}-\mathrm{Al}-\mathrm{O}$ valence angles are around 89 and 116°, respectively. These tetrahedra are somewhat different in the similar molecule $\left[\mathrm{Al}\left\{\mathrm{Al}\left({ }^{i} \mathrm{PrO}\right)_{4}\right\}_{3}\right]$ (Turova et al., 1979; Folting et al., 1991); while distances remain the same, angles change to 83° for $\mu_{2}-\mathrm{O}-$ $\mathrm{Al}-\mu_{2}-\mathrm{O}$ and 120° for $\mathrm{O}-\mathrm{Al}-\mathrm{O}$. It has been observed that $\left[\mathrm{Nd}\left\{\mathrm{Al}\left({ }^{i} \mathrm{PrO}\right)_{4}\right\}_{3}\right] \cdot{ }^{i} \mathrm{PrOH}$ decomposes into $\left[\mathrm{Nd}\left\{\mathrm{Al}\left({ }^{i} \mathrm{PrO}\right)_{4}\right\}_{3}\right]$ during distillation under vacuum (Veith et al., 2000).

Experimental

All reactions were performed under an argon atmosphere (<1 p.p.m. $\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}$) in a glove-box. The toluene, 2-propanol (${ }^{i} \mathrm{PrOH}$) and n-hexane solvents were dried by distillation over CaH_{2} under an inert atmosphere. The potassium and anhydrous NdCl_{3} (Strem Chemicals, 99.9%) were used as purchased, while the $\mathrm{Al}_{4}\left({ }^{(} \mathrm{PrO}\right)_{12}$ (Sigma, 99.9\%) was recrystallized from toluene- ${ }^{i} \mathrm{PrOH}$ before use. Potassium (21.07 mmol) was dissolved in ${ }^{i} \mathrm{PrOH}$-toluene ($20 \mathrm{ml} ; 1: 1, v / v$) and $\mathrm{Al}_{4}\left({ }^{(} \mathrm{PrO}\right)_{12}(21.08 \mathrm{mmol})$ was added with stirring. After 30 min , $\mathrm{NdCl}_{3}(7.025 \mathrm{mmol})$ was added and 48 h later the mixture was centrifuged to precipitate the solid KCl formed in the reaction. The blue solution was evaporated to dryness and dissolved in toluene-n-hexane ($1: 1, v / v$) and once again evaporated to dryness. Compound (I) was then crystallized over a period of more than one month from a concentrated n-hexane solution. FT-IR (nujol, cm^{-1}): 1184, 1171, $1138,1126,1119,1033,955,862,855,830,702,673,607,568,477,448$, 398. The peaks at $1200-1100 \mathrm{~cm}^{-1}$ correspond to $\mathrm{C}-\mathrm{C}$ vibrations of the isopropyl groups.

Crystal data

$\left[\mathrm{Nd}\left\{\mathrm{Al}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right)_{4}\right\}_{3}\right]$
$M_{r}=934.21$
Monoclinic, $P 2_{1}$
$a=13.1476$ (15) \AA
$b=22.6558$ (16) \AA
$c=16.9355$ (19) \AA
$\beta=90.221$ (14) ${ }^{\circ}$
$V=5044.5$ (9) \AA^{3}
$Z=4$

Data collection

Stoe IPDS diffractometer
φ oscillation scans
Absorption correction: numerical
[X-SHAPE (Stoe \& Cie, 1996)
and X-RED (Stoe \& Cie, 1996)]
$T_{\text {min }}=0.661, T_{\text {max }}=0.849$
26970 measured reflections
9421 independent reflections (plus 6949 Friedel-related reflections)

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.069$
$S=1.034$
16370 reflections
922 parameters
H -atom parameters constrained

$$
\begin{aligned}
& D_{x}=1.230 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 5000 \\
& \quad \text { reflections } \\
& \theta=6-22.9^{\circ} \\
& \mu=1.129 \mathrm{~mm}^{-1} \\
& T=110(2) \mathrm{K} \\
& \text { Irregular, pale blue } \\
& 0.40 \times 0.20 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

15077 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=26.08^{\circ}$
$h=-16 \rightarrow 16$
$k=-27 \rightarrow 27$
$l=-20 \rightarrow 20$
50-200 standard reflections frequency: 5 min intensity decay: none

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0351 P)^{2}\right. \\
& +0.0284 P \text {] } \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.002 \\
& \Delta \rho_{\text {max }}=0.68 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.92 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983) } \\
& \text { Flack parameter }=-0.022(9)
\end{aligned}
$$

The absolute structure of (I) was chosen according to the Flack parameter (Flack, 1983), based on 6949 Friedel pairs. The $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ groups connected to $\mathrm{O} 1, \mathrm{O} 9, \mathrm{O} 10, \mathrm{O} 11, \mathrm{O} 13, \mathrm{O} 19, \mathrm{O} 21$ and O 23 were disordered over two sites, which were refined isotropically. A common occupancy factor was used for every atom within any given disordered group. The sum of the occupancy factors of two disor-

Table 1
Selected geometric parameters (\AA).

Nd1-O3	2.339 (4)	Nd2-O14	2.346 (4)
Nd1-O1	2.351 (4)	Nd2-O18	2.347 (4)
Nd1-O6	2.353 (4)	Nd2-O16	2.351 (4)
Nd1-O4	2.361 (4)	Nd2-O15	2.352 (4)
Nd1-O2	2.361 (4)	Nd2-O17	2.364 (4)
Nd1-O5	2.362 (4)	Nd2-O13	2.366 (4)
Al1-O7	1.678 (5)	A14-O20	1.692 (5)
Al1-O8	1.704 (5)	Al4-O19	1.693 (5)
$\mathrm{Al1}-\mathrm{O} 1$	1.791 (5)	Al4-O13	1.780 (5)
$\mathrm{Al1}-\mathrm{O} 2$	1.795 (4)	Al4-O14	1.799 (4)
$\mathrm{Al2}-\mathrm{O} 9$	1.689 (5)	Al5-O22	1.694 (5)
Al2-O10	1.692 (5)	Al5-O21	1.701 (5)
$\mathrm{Al2}-\mathrm{O} 4$	1.756 (5)	Al5-O15	1.778 (4)
$\mathrm{Al} 2-\mathrm{O} 3$	1.803 (5)	Al5-O16	1.802 (4)
Al3-O12	1.699 (5)	Al6-O24	1.697 (5)
Al3-O11	1.703 (5)	Al6-O23	1.707 (6)
$\mathrm{Al3}-\mathrm{O} 5$	1.787 (5)	Al6-O18	1.795 (5)
Al3-O6	1.795 (4)	Al6-O17	1.795 (5)

dered groups connected to the same O atom was constrained to 1.0 . The final values of the occupancy factors corresponding to the above O atoms were 0.19 (2), 0.39 (2), 0.38 (2), 0.38 (2), 0.39 (2), 0.42 (2), 0.43 (5) and 0.36 (2), respectively. $1,2-\mathrm{C}-\mathrm{C}$ bonding distances were restrained to the expected value of $1.52 \AA$, and $1,3-\mathrm{C} \cdots \mathrm{C}$ interatomic distances were restrained to $2.45 \AA$. All H atoms were placed in calculated positions, with isotropic displacement parameters 1.2 times the $U_{\text {iso }}$ of their respective parent C atom. $\mathrm{CH}_{3}(\mathrm{C}-\mathrm{H}=0.98 \AA)$ and $\mathrm{CH}(\mathrm{C}-\mathrm{H}=1.00 \AA)$ groups were constrained to idealized geometries, with H atoms riding. The crystal under investigation was twinned by pseudo-merohedry, with the twin law $100,0 \overline{1} 0,00 \overline{1}$. The twin fraction was refined to 0.3510 (6).

Data collection: IPDS Software (Stoe \& Cie, 1996); cell refinement: IPDS Software; data reduction: IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999).

This work was supported by a grant from the Swedish Natural Science Research Council.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1432). Services for accessing these data are described at the back of the journal.

References

Brandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Folting, K., Streib, W. E., Caulton, K. G., Poncelet, O. \& Hubert-Pfalzgraf, L. G. (1991). Polyhedron, 10, 1639-1646.

Kritikos, M., Moustiakimov, M. \& Westin, G. (2001). In preparation.
Pilati, T. \& Forni, A. (2000). J. Appl. Cryst. 33, 417.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (1996). X-RED (Version 1.07), X-SHAPE (Version 1.01) and IPDS Software (Version 2.87). Stoe \& Cie, Darmstadt, Germany.
Turova, N. Y., Fozunov, V. A., Yanovskii, A. I., Bokii, N. G., Struchkov, Y. T. \& Tarnopolskii, B. L. (1979). J. Inorg. Nucl. Chem. 41, 5-11.
Veith, M., Mathur, S., Lecerf, N., Bartz, K., Heintz, M. \& Huch, V. (2000). Chem. Mater. 12, 271-274.
Westin, G., Ekstrand, Å., Zanghellini, E. \& Börjesson, L. (2000). J. Phys. Chem. Solids, 61, 67-74.
Westin, G., Wijk, M., Moustiakimov, M. \& Kritikos, M. (1998). J. Sol-Gel Sci. Technol. 13, 125-128.
Wijk, M., Norrestam, R., Nygren, M. \& Westin, G. (1996). Inorg. Chem. 35, 1077-1079.

